
Journal of Engineering Mathematics 27: 31-72, 1993.
( 1993 Kluwer Academic Publishers. Printed in the Netherlands. 31

'Instantaneous source' solutions to a singular nonlinear diffusion
equation

J.R. KING
Department of Theoretical Mechanics, University of Nottingham, Nottingham NG7 2RD, UK

Received 20 August 1991; accepted in revised form 27 May 1992

Abstract. The nonlinear diffusion equation u, = (u'uj,) possesses an instantaneous source similarity solution only
for m > -2. Here we discuss physically motivated initial-boundary value problems for which a solution exists for all
values of m. For delta function initial conditions, the case m < -2 is characterised by persistence of the delta
function for a finite time.

1. Introduction

It is well known that for m > -2 the nonlinear diffusion equation

at ax ( (1.1)

has an instantaneous source similarity solution corresponding to conditions

as IxI---> - o, uO, m -- o,
ax

at t =0 u = MS(x). I (1.2)

(1.3)

(1.4)

For m = 0 we have

u = Mt- 112 f(xlt /2 ),

where

1 _ ,/2/4
f(*/) = 1 e n,/

while for m 0 we write

u = a 2/mt (m+2)f(x/atl(m+2 ))

where the constant a is determined from

a (m +2)/m f f(]) d = M.

(1.5)
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For m > 0 we have (see Barenblatt [1])

f(n) = 2(m + 2) (- 2) <* 1 (1.6)

=o0 I I1,

so that the solution has compact support. When discussing the case m <0 we shall write
n = -m. For 0<n<2 we have (see Landau and Lifschitz [2], p. 203)

(1.7)f(n) = (2(2- n) (1 + 2)) (1.7)

For m - -2, however, it is known that (1.1) subject to (1.2) has no solution; see, for
example, Herrero [3] and Esteban et al. [4]. In this paper we shall focus on the case m - -2,
though new results for m > -2 are also included for completeness, and we shall discuss some
modifications to (1.2) which are suggested by physical considerations and for which (1.1) has
a solution for all values of m. Our motivation comes from models for impurity diffusion in
semiconductors. For example, models for gold diffusion in silicon lead under appropriate
limits to (1.1) with m = -2 (G6sele et al. [5]) while zinc diffusion in gallium arsenide can
lead to (1.1) with m = -4 (G6sele and Morehead [6]).

We consider two sets of boundary and initial conditions, namely the finite domain problem

au
at x = - L =0,

au (1.8)
at x = L2 = (1.8)

at t = 0 u = M(x),

where L1 and L2 are positive constants, and the infinite domain problem

as Ix-->oo u- e, 1.9
at t = 0 u= M(x)+ e, (

for some constant e > 0. The conditions (1.9) either account for a non-zero background
concentration, or correspond to a model problem

at = a ((c + )m2 )

at ax ax

(where c = u - E) in which the diffusivity

D(c) = ( + E)
m

does not blow up or vanish as c--> 0.
We note that for (1.8) it is possible to rescale to take, without loss of generality, M = 1

and either L1 or L2 = 1. Similarly, in (1.9) we may rescale to set M= 1. Here we prefer to
retain these parameters explicitly since they represent quantities which can in practice be
varied independently, and it is helpful to be able to observe the dependence on each of them
directly. We note, however, that the parameter dependencies take the following forms.
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(a) (1.1) subject to (1.8)

L 2 x Mm t L1
M L X L +2; m, L ;

(b) (1.1) subject to (1.9)

U e em+2t
u = E M2 ;m .

We shall show that (1.1) subject to either (1.8) or (1.9) possesses a solution for all values
of m. While the initial conditions are artificial, they will enable us to construct solutions
which are in certain cases exact for some finite range of t, and our solutions provide
indications of the behaviour in more general cases. Rigorous results for nonlinear diffusion
equations which involve measures in the initial conditions have been given in, for example,
Brezis and Friedman [7].

Our main tools are similarity methods and a non-local transformation originally due to
Storm [8] (see also King [9] and references therein), together with singular perturbation
methods. We first discuss (1.8) and then (1.9), after which we consider the behaviour for
more general initial conditions. We conclude with some discussion.

2. Finite domain problems

2.1. m30

The behaviour of (1.1) subject to (1.8) is well understood for m 3 0. For m > 0, expressions
(1.5) and (1.6) give the solution exactly for

t<[min(L1, L2)la]m+2;

for larger t the solution cannot be found analytically. For m = 0 the solution is

u = - E (e
-
(x

-2 j
(L+L2))

2
/4t + e(x

-2 j
(L+L 2 )

-
2L 2 )

2
/4t)

It is instructive to consider the behaviour of (2.1) for small t. As t->O+ , equation (2.1)
implies that

M -x214t

2--

(which is the instantaneous source solution (1.3) and (1.4)), except near x =-L 1 and
x = L2 ; for L2 - x = O(t) we have

U M e- L 2
/4t cosh(L2(L 2 - x) /2t),

cthL2 L

with similar behaviour close to x = - LI.
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2.2. O<n<2

In this case the solution cannot be obtained exactly for finite t because the instantaneous
source solution (1.5) and (1.7) does not have compact support. However the instantaneous
source solution does describe the small-time behaviour close to x = 0 and we may write

U a-2/nt- 1/ ( 2
n)f(xlatl/(2-n)) as t- O+ forx = O(t/(2-n) ,

where f(/) is given by (1.7). This solution implies that

u 2(2- n) t 

for t/ ( 2- n) < Ix 1, and the solution in x = 0(1) is therefore given by the separable solution

uw-tlng(x) as t->O+

with

I ( g- n .d

n d g dx'

asx-->0+ g-( 2(2 - n) x 2)

dg
at x = L2 d =0,

dx

(2.2)

for x > 0, and similarly for x < 0. The solution to (2.2) may be written in the form

fg -n(o
2 - n

- 1)
-

1/2 dw = (2gon(2 - n)) /
2

x (2.3)

where

2

go - g(L2) = (n(2 - n)/2)l/n ( -"(w 2 - n - 1)- 1/2 da)/L 2

This solution can be illustrated by the special cases

n=1 g =r2/2L2sin2(rrx ) 

n = g = X
-
3/2 1 - 2 -)/2

n=3 g ( 2L2

2.3. n 2

2.3.1. Reformulation
Turning now to the case m -2 we shall use a non-local transformations to map the
problem into one which is well understood (cf. Berryman [10]). We introduce
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= E u(x', t) dx',

to give

av = av -n a2v
at = \ax X2 '
atx = -L v =0,

at x = L2 = M,

att=0, x<0 v=MH(x),

where H(x) denotes the Heaviside step function, and then make use of the hodograph
transformation

V= x, X= v, T= t

to give

aV ( aV\n-2 a2V
aT ax ax2 

atX=0 V= -L 1,

atX= M V= L2 ,

at T=O,O<X<M V=O.

(2.5)

= aV
Writing U = - now givesax

au a Un- 2 a
T - a

at X = - =0,
ax

atX=M a=0,

at T=0,O<X<M U=O,

with U(X', O) dX' = L, U(X', O) dX' = L 2 for 0 < X < M,Ji.J

(2.6)

JU JA

so that we can map the problem (1.1) and (1.8) into a similar one in which the initial data
now has a delta function at each of the ends X = 0 and X = M. Having determined the
solution to (2.6), the solution to (1.1) and (1.8) is given by

X

u = 1/ U, x =-L + U(X', T)dX',t= T. (2.7)

As an aside, we note that in the limit L2 ---> 0 (or L--> 0) the two problems (2.6) and (1.1)
subject to (1.8) take essentially the same forms. Moreover, when n = 1 the exponents -n
and n -2 are also the same so that if, in the limit L 2---> 0, we write the solution to (2.4) with

(2.4)



36 J.R. King

n = 1 in the form

v = MO(xlL1 , tIML1 ) (2.8)

then the solution to (2.5) is

V= -L (XI-M, TIML1),

which is

x = -L 0(u/ -M, tIML) . (2.9)

Equations (2.8) and (2.9) imply that if the solution is written in the form

M Li M + MLI

then P satisfies the symmetry condition

( f, ) = q(- , ),

which implies in particular that u = M/LI (its average value) at the point at which
vlM = -xL 1.

Returning now to (2.6) we note that if n = 2 the problem is linear, while if n > 2 the
exponent n - 2 is positive.

2.3.2. n = 2
If n = 2 the solution to (2.6) is given by

U = AT (( C e (X2iM)2
14T L e(X(21)M)214T)

Ij=- j=o

so that

-/ X + 2jM X-2jM
V= - erfc 1 2T ))

2T 2T

+L 2. (erfc (2j + 1)M - X (2j + 1)M + X+ L2 E erfc[ 2 erfc .2
j-0 2T2 T1/ 2

Using (2.7), the small time behaviour of the solution for u may be expressed as follows.

(1) v = (t1 /2 ) (X < O)
Then

x - -L erfc(v/2t'/2 ), u (t)' /2 eu2/4t/Li,

so that

x- -L l erfc(ln' /2 ( Ll u // i- - t )) . (2.10)
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(2) M-v=O(t/ 2 ) (x>O)
Then

x - L2 erfc((M - v) /2t 1 2)), u - (Tt) 1 2
e(M-v)

2 /4'L2,

so that

x - L2 erfc(ln/ 2(L 2 u/t)) . (2.11)

Equations (2.10) and (2.11) both correspond to separable solutions so that

u- tl2g(x) as t0 + ,

and u = tl/ 2g(x) exactly satisfies (1.1) with m = -2. We note that

at x = -L, u -- (rrt)1/21/ L ,

at x = L 2 u -- (t)/2/L2 .

Equations (2.10) and (2.11) also imply that

asx--->0 u- -- t1 1 2/x Inl 2 (-1/Ix),
(2.12)

as x--> 0+ u- tl/2/xlnl/2(1 x) .

(3) v = M/2 + O(t) (x = O(t1/ 2 exp(-M2 /16t)))
In this case

8(LL 2 t)1 12 eM 2/16 sinh(M(v - M/2) + ( ))
12Q 4t

u--(7rt)l/ 2 eM2 16t'2(LL 2)12 cosh( M(v - M/2) + n(L2))

giving

u - 4tl(M 2x2 + 64LL 2t e-M 2/8t/ 1r)/2 , (2.13)

which holds as t--> 0+ for x = (t
1 2 e-M 2/16t). The expression (2.13) does not give an exact

solution to (1.1) with m = -2, but does describe the asymptotic behaviour for small t.
We note that the separable solution plays the same role as for 0< n <2, but the

instantaneous source solution is replaced by (2.13), equation (1.1) having no instantaneous
source similarity solution when m = -2.

We also note from (2.13) that

at x = 0 u - (t) 112 eM2/16t/2(LL2)1 /2

so that for small t the maximum concentration is exponentially large.
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2.3.3. n>2
The solution to (2.6) with n > 2 may be written down exactly for finite T in the form

(2.14)U T-n(a2(n-2) F(ql) + a2/(n-2)F(2)) 

where

m71 = XlalT 1 /n , 712 = (M - X)Ia2 T 1 'n

the constants al and a 2 are given by

(2.15)ak (n-2) F(i?)dq=Lk, k=1,2,

and

F(qr) = ( 2n (1-71 ))

=0 / 1>.

The solution (2.14) is thus the sum of two instantaneous source solutions for U and is exact
for

T< Tc,

where

(2.16)T, (M/(aI + a2)) ;

we have

U = O for a,T' / < X< M - a2 T/ .

The form of solution for each of the variables arising in the non-local transformation is
shown schematically in Fig. 1. Transforming this solution back we have

at x = u = (M-(al + a2 )tl'"n)(x) for t < T,

so that the delta function at the origin persists for finite time, though with diminishing
magnitude. In each of x < 0 and x > 0 we have a separable solution

u = tl/ng(x) for t< Tc

into which the instantaneous source solutions for U map. In x > 0 this may be written
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o-n(1 - o2-n)-/ 2 duo = (2goln(n -2)) l2x,

where

go --g(L 2) = (n(n - 2)12)/(J o-n(1 _ o2-n) - 1
/2 dwIL 2 (2.17)

We note that g-> +x as x-O 0, but in contrast to (2.2) the local behaviour is given by

g = (x 1/(n- )) asx-s O+ ,

which represents a quasi-steady balance in (1.1).

IT

(a)

(b)

Fig. 1. Schematic of solutions for the finite domain problem for 0< t< < T. (a) U(X, T); see (2.6). (b) V(X, T); see
(2.5). (c) v(x,t); see (2.4). (d) u(x,t); see (1.1) and (1.8).



(C)

(d)

V 4

0 I x

L2

Fig. 1. (contd.).

The asymptotic behaviour close to T=
then we have at T= Tc

(n- 2 I1 )/n -/I (n-2)
n -

Tc may also be determined. Writing Xc = aT}"

as X---> Xc

The behaviour near X = Xc as T--> T + is then given by

U (T- T)/(n-2)B(x) ,

40 J.R. King

and

MS 15

A

f

II

U-(n T -( -1 In 2(X XJas X--, X+ 

(2.18)
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where

x = (X- X,)/(T- Tc)

and B(X) satisfies

1 dB d (n dB

n- 2 B-X d -a-Bn-2
n-2 T;("')'"oX)\1(n - 2)

as X -o B (--2 ( _ ) ai.) (2.19)

as x- +o B - n T c (n-l)na2 X

If Bmin min(B) then, because u = 1/U, the maximum value of u satisfies

Umax - (t - Tc)-l(n-2)/Bmi as t---> T +
. (2.20)

We summarise our results for the finite domain problem by the following comments.
For m > 0 the solution (1.5) has compact support and does not feel the boundaries of the

domain until some finite time. For -2 < m < 0 the small time behaviour is described by (1.5)
close to x = 0, so the high concentration region in this case also initially ignores the presence
of the boundaries; the low concentration behaviour is governed by the separable solution
and is dependent on the location of the boundaries (see (2.2)).

For n > 2 the delta function persists for a finite time, but is depleted by the transfer of
material into the low concentration regions, which can again be described by the separable
solution. It follows from (2.15) and (2.16) that the time of extinction of the delta function,
T c, satisfies

TC o Mn/(L ( n - 2 ) ln + L(n-2)In)n

Hence Tc-->O as L or L2---> with M fixed; this occurs because the low concentration
regions extract material from the delta function more rapidly as L and L2 increase.

3. Infinite domain problems

3.1. m>O

We now discuss the behaviour of (1.1) subject to (1.9). Exploiting the symmetry of the
problem we may consider

at ax ( aux '
Ou

atx=0 au =0,
ax

asx- + u--> E ,

at t = 0 u = M(x)+ E ;,

(3.1)
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we note that

fo (- ) dx = M12.

Although the problem may be rescaled to make E = 1, for m > -2 we shall concentrate on
the asymptotic behaviour for E 1, which is equivalent to considering the small time
behaviour.

For m > 0 the leading order behaviour as ---> 0 with t = 0(1) is given for x < atl/(m+2 ) by
(1.5) and (1.6). The exact solution, however, does not have compact support, and in the
limit E--->0 (3.1) is a singular perturbation problem. This problem has some interesting
features from the point of view of asymptotics, but since it lies outside the main theme of this
paper we relegate its discussion to Appendix 1.

For m = 0 the solution to (3.1) is

M _x
2

14t
u- = 2~r~e +E.

3.2. O<n<2

The analysis for this case follows that of King [11]. Writing

u = Uo(x, t) + o(1) as E--->

for x = 0(1), the leading order solution is again

U0 = a-2int-1/(2-n)f(/at1 /( 2 - n ) )
,

where f(7) is given by (1.7). It follows that

u- s2 (2- n) as

There is an outer region in which the rescalings are

-n/2
X=E y U=W

and writing

w = w(y,t)+o(1) as e-0

we obtain

awo = a (-n Wo)
at y y 0 ,/ '

as y w° ,(2(2- n) t

as y--> +oo wo--> l,

att=0 wo=1.

(3.2)
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The solution to (3.2) takes the self-similar form

wO = p(Y/ t 2 ),

where p( ) satisfies

ddp d ( -n dp
½ d d d'

n
as - + P-( 2(2- n) 2) (3.3)

as + p--> .

3.3. n2

3.3.1. Reformulation
For this case we are able to describe the behaviour exactly for some finite time. We do not
therefore need to restrict attention to the small time behaviour, and we use the rescalings

U---> EU, X-X/E, t--> t
m +

to obtain

au a m au

at ax ( ax I

au
at x =0 - =0,

ax

as x--> + u---> 1,

at t = 0 u = M(x) + 1.

(3.4)

We introduce

v = u(x', t) dx'

to give

=( a a2

at ax ax2 '

atx =0 v =0,

asx-+oo v -x+M12,

at t=0 v = x + M/2.

The hodograph transformation

V= x, X= v, T= t
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now yields

aV ( aV)n-2 a2V

d-T a x / X 2

asX=O V=0,

as X- +0 V- X - M12,

at T=O V (X- M)H(X-. 2 )

Finally, writing U= dX gives
ax

aT aX a X 

aU
at X = O -X 0,

(3.5)
as X---> +c U- 1,

atT=0 U=H(X-M)

The solution to (3.4) is given in terms of the solution to (3.5) by

u= 1/, =f U(X', T) dX', t= T. (3.6)

3.3.2. n = 2
In this case (3.5) has solution

U = (erfc((M - 2X) /4T) + erfc((M + 2X)/4TT" 2))/2, (3.7)

so that

V= ((M + 2X) erfc((M + 2X) /4T" 2) - (M - 2X) erfc((M - 2X) /4 T' 2)

+ 4fT (e -(M-2X)216T _e-(M+2X)216T))/4 (3.8)

Using (3.6), the small t behaviour of the solution to (3.4) may then be determined as
follows.

(1) v = M/2 + O(t' /2 ) (x = O(t 12 ))
Writing

v - M12 = -t"26

gives the small t solution in the form
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xtl 2 1 e-62/4- erfc(1/2) 
2

(3.9)
u - 2/erfc(e/2) .

We note that this solution, which describes the small t behaviour everywhere except very
close to x = 0, takes the form

u - p(xlt 1 2) .

The solution given by (3.9) has

u - tl 2/x Inl'2 (1/x) as x-0 + .

(2) v = O(t) (x = O[t3/ 2 exp(-M2/16t)])
Now

x - 16t3 /2 e- M 2
/16t sinh(Mv/4t) /1/r'2M

2 ,

U - Ir1/2M eM2/16t/4t1 /2 cosh(Mv/4t) ,

so that

u - 4tl(M2 x2 + 256t3 e-mM2/81 M2 )12
/2 (3.10)

We have the exact result

atx=0 u=l/erfc(M/4t'/2 ),

which implies that

atx=0 u-rl/2MeM2/16t/4 tl/2 ast- 0+,

which is again exponentially large.

3.3.3. n>2
For n > 2 and for sufficiently small T the exact solution to (3.5) takes the form

U = P[(M - 2X)/2T1 /2], (3.11)

where P( ) satisfies

dP d (p - 2 dP)

as ---> - P-- 1, (3.12)

at = 6 0 P = , lim (p, d) oe--'0 d) 2
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where the constant 60 is determined as part of the solution to (3.12). We then have

U=O for O0<X (M-2eoT1/2)2,

and the solution takes the form (3.11) for

T<T c,

where, in this case,

T c = M 21/4 . (3.13)

If we define

Q( )= I P(m')d6',

then the solution to (3.4) is given for t < Tc, x > O by

x = t2Q(),

u = 1/P( ),

so that u again takes the form

u = p(xlt"2 )

in x > 0. The function p( ) can alternatively be obtained directly as the solution to

dp d; ( dp)
ld dr ( dd- '

as -0 + p- +,(3.14)

as -+o p--l.

Since

p() ( (n2) - ) as 0- 

it follows that

((n 1) ) 1/(n-1)

p(i) ( bn 1) i0) (as e O+

which may be contrasted with (3.3). We also note from (3.14) the integral results

fo (p( ) - 1) d=0 ,
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and

I ~(p(;) -l1) d =1 .

the latter implies that

o x(u(x, t) - 1) dx= n-1

At x = 0 we again have a delta function for sufficiently small t; in this case

atx=O u=M(1-(tlT)1i2)((x ) fort<Tc . (3.15)

The behaviour close to the time at which the delta function disappears is similar to that
discussed in Section 2.3.3. Writing

X = XI(T- T),

we then have

U- (T- T¢)l / (n - 2 ) B(X) as T---> T + with X = 0(1), (3.16)

where B(X) can be determined from

1 dB d (-2 dB
n-- 2 BX dX - dB

atX=O =dB
das x

as X---> +, B -- [(n - 2)XM] (n - 2 )

The following comments summarise our infinite domain results.
For m > -2 and for small time, the high concentration region ignores the presence of the

small background concentration. The transition to this background concentration is of
travelling wave type for m > 0 (see Appendix 1) and is governed by a Boltzmann similarity
solution for -2 < m < 0 (see (3.3)).

For n > 2 the delta function again persists for finite time. In terms of the original time
variable, the time of extinction of the delta function is proportional to e

n
2 M2 . For fixed M

the delta function therefore disappears more rapidly as E decreases; in the limit E--0 the
material instantaneously diffuses out to infinity.

4. General initial conditions

4.1. Formulation

In this section we shall consider the following generalisation of the infinite domain problem:



48 J.R. King

au a m aU
at axV ax'

as xl-oc u E, (4.1)

at t =0 u = I(x) + ,

where I(x) is some specified positive function which satisfies

I Idx=M.

Results for the equivalent generalisation to the finite domain problem may be derived in a
similar manner to those of this section.

We shall consider the case e < 1, with I(x) = 0(1) for x = 0(1). The detailed structure
depends on how I(x) decays for large x, and for definiteness we shall assume that

I(x) - Ax - a asx-> +co, (4.2)

for constants A > 0 and a > 1, with similar behaviour as x-- - . We shall for the most part
discuss the behaviour in x > 0 only; the behaviour in x < 0 follows in an obvious fashion.

When t becomes sufficiently large it is clear that u will drop to become O(8) everywhere,
and (4.1) ceases to be amenable to asymptotic methods. Here we shall only be interested in
the earlier stages of the development in which umax >> . With regard to the late-stage
behaviour we simply remark that for very large times we have

U -E 2 eM lt)l/2 e 2 for x = O(Em 2t1/2 )

4.2. m > -2

Related results for m = 1 are given in [12] and [13], and the results of [11] are relevant when
-2< m <0. Briefly, the asymptotic behaviour is as follows. In x = 0(1) we write for
t= 0(1)

u = u0(x, t) + o(1),

with

au ( m auoI
at a UO ax'

aslxl--->o u 0 --->, (4.3)

at t = 0 u = I(x).

The large-time behaviour of (4.3) is given by (1.5) together with (1.6) or (1.7). We now
discuss the cases m > 0 and m < 0 separately.

(a) m > 0
The far-field behaviour of (4.1) is steady-state for m > 0:
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u- + Ax- asx- +o .

The large t behaviour of (4.3) is described by (1.5) only for x < atl(m+2). From (4.2) it
follows that when x is close to at1 /( m+2 ) then I= O(t- "/(m+ 2 )) and this is of O(E) when
t = O(E- (m + 2 ) /

1
) which is therefore an important timescale. Writing

-(m+2)/a^ - I/a At=E t, x=e y, U = E

gives

- (0 8a) .

We then have

a - a2/m -1l(m+ 2)f(/latl(m+2 )) for 9 < aill(m+2), (4.4)

where f is given by (1.6), and near 9 = atli(m+2 ) we write

9 = (t; E) + Em(l-/a) , = El-/aW ,

where (i; 0) = ati' (m+2), to give at leading order

1 a-(m+)/(m+2) + 2)) = wm 
m+2 at +l)(m2)( - 1 - Aa-aiI(m2))= 0 (4.5)

(compare (A1.1)). In > al / (m+2)

w - 1 + A9- a (4.6)

holds. Equation (4.5) describes the narrow region of transition between the instantaneous
source solution (4.4) and the far-field behaviour (4.6).

On the even longer timescale t = O(E-(m+2 )), U is of O(E) everywhere.

(b) 0<n<2
The far-field behaviour of the solution to (4.3) may now be categorised as follows.

(i) 1<a<- Uo A X
- ~ asx- +o;

n

2 nx2

n 2(2- n)t + nA/n

2 -( nx 2 -'/n
(iii) a > - u0 - as x-> +x for t > 0 .

For small t the transition to the case (iii) behaviour takes the form

u0 - t/(n-
2

)O(Xt l/(na 
2
)) for t< 1, x = O(t 1 1

(na-2)) , (4.7)
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where 0(/tt) satisfies

,1 d(rA d ) -n da
na - 2a + do- d dcn 2 d/J d, duJ

as --->0+ ( - A-a, (4.8)

as I ->+oo 0- -2(2 - n)/

The solution to (4.8) may be illustrated by the case a = 2, n = in which it may be solved
exactly to give

(A 1/ 2 2 (A/r)l/22 A
3 /2

(T + 2 ln +(A ) 2 = --- 2;

see Section 3.3 of King [14].
In addition to (4.3) there is an outer region with:

(i) x = E- , U= Ew with w l+A A ;

(ii) X= E-n/2y, u = EW with w- wo where

awo a( ( -n awo)
at =ay OW ay J

asy- +r w 0-->1,

att=0 w =Ay- 2 n + 1.

(iii) x = n/2 y, u= EW with w p(y/t 1 2 )

where p(') satisfies (3.3). As t-- +oo, the solution to (4.9) satisfies wo -p(y/tP/ 2).
The large-time behaviour of (4.3) may be described more completely as follows.

(i) uo - a-2/"t- /(2-n)f(x/at"( 2 - n) ) for x = O(t(2-n)) , (4.10)

where f(r/) is given by (1.7) and, on a longer lengthscale,

Uo - t-
a(2 ") (X/t 1/ (2- n, ) ) for x = O(t 1 ( 2 )),

where o-(/) satisfies

- (au + d) d O-n d)
2 u(na d/z2 -I/n

as ,0- -(2(2 - n)

as --->+oc A/ ,
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and may be illustrated by the exact solution

A2

(A1 /2 /x coth( A1 /2) - 2)2

which holds for a = 2, n = ; see Section 3.2 of King [14].
We note that for m > -2 and t = 0(1), at leading order the mass is all contained in the

high concentration region x = 0(1); the total mass in the low concentration regions is of o(l)

as e-*0.
In cases (ii) and (iii), expression (4.10) describes the large t behaviour everywhere. In all

cases, on the much longer timescale t = O(e- (2 - n)) u is again of O(E) everywhere and a fuller
balance of terms occurs.

4.3. n2

4.3.1. n>2
The asymptotic results of this section are guided by our earlier exact results. In this case

(4.3) has no solution, and we must consider a shorter timescale. We write t= vt*, where
v <' 1 is to be determined in terms of E.

The asymptotic structure is made up of four regions as follows. Writing

x = s*(t*; v) + vz* ,

where s* is determined by matching, with s(t*)- s*(t*; 0), then we have

(I) x= 0(1), x<s S*(t*);

(II) z* = 0(1);

(III) x= 0(1), x>s*(t*);

(IV) x = O(E-1).

Details are as follows.

(I) We have

ax a -n )at* : v dxx

so that

u - I(x) . (4.11)

(II) In this narrow transition layer we have (writing S* = ds*

Ou _ au a au (
v t* s az* az* u a 

so at leading order
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So*(I(s*) - Uo) = Uo z* ' (4.12)

where we have matched with (4.11). The arbitrary function of t* which arises on integrating
(4.12) is equivalent to a t* dependent translation of z* and may therefore be absorbed into
the O(v) term of s*(t*; v). Further terms in the various expansions may, however, need to
be determined in order to obtain s* correctly to O(v), in a manner somewhat similar to that
of the problem discussed in Appendix 1.

Equation (4.12) implies that

Uo-(-*(n- 1)I(s*)z*) -[1 (n- l ) asz*---> +o; (4.13)

we note that s* < 0.

(III) From (4.13) it follows that in x > s* we should write

U = Vl/(n-)~O

so that

1/(n-1) ao_ a( -n al)

at* -x 'P axx

Matching with (4.13) then requires that

Po = (-.s(n - )I(s*)(x - s*))1'1 . (4.14)

(IV) It follows from (4.14) that u = O(E) for x = O(ve- (- l )) and the rescalings in this
final region are therefore

U = EW , X = -(n-)y
*

,

giving

awt* -n-2 a (W- aw
= ay* ay*)

which requires that we choose v = " -2, so that x = e-y*. At leading order we have

aWo_ a (n aWO)
at* ay* ay*/ '

as y*---> O+ wo-- +oo, (4.15)

asy*---> + wo---> 1,

at t* =O w = 1;

more precisely, matching with (4.15) implies that w = O(y*- l/( n - 1)) as y*--O0+ . The
conditions in (4.15) are sufficient to specify w, uniquely, and we have wo=p(y*ltl'

2),
where p(?) satisfies (3.14). Hence
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Wo ~ (Ky* t*l2) - 1 (n - ) as y*--> O+

for some constant K which is determined by solving (3.14), and from (4.14) it then follows
that s is determined from

-s(n - 1)I(s*) = Kt*

which implies that

I (x) dx = 2K t*/2 (4.16)

It follows that extinction of region (I) occurs at some finite t*, tc*() say, where

t* t¢-3(( ' 1)m ) (4.17)

and we write

s*(t*) = xc , So(too) = Xco ,

where xc - xcO and xco is given by

Il(x) dx = -. (4.18)

This follows because at t* = t*, x = xc the transition region (II) which moves in from the
right meets the equivalent one moving in from the left. A schematic of the form of the
solution for t* < t* is illustrated in Fig. 2. The regions (II) and (III) describe the way in
which mass is transferred from the high concentration region (I) to the low concentration
region (IV), prior to the disappearance of region (I) at t* = t*. At leading order for t* < t*
the total mass is shared between the high concentration region (I) and the low concentration
region (IV).

We note that the leading order extinction time (4.17) depends only on the total mass M
and not on the details of initial distribution I(x). Because K = (n - 1)o/2, expression (4.17)
is consistent with (3.13) which arose from the delta function initial conditions.

There are two other timescales of interest. Firstly we note that I(x)= O(e) for
x = O(E- /') and there is a shorter timescale in which we write

t = n-2/a -1/ = to obtain the leading y, u=order problem

to obtain the leading order problem

awO a (-, awo) 

as -- 0 + w - A- ,

as 9--> + w---> 1 ,

atTO W = 1 + A-;

(4.19)
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c

Fig. 2. Schematic of solution to (4.1) with m < -2, e 1. (a) t = 0, u = (x) + E. (b) t* = t with 0 < t < t*.

in x = 0(1)

u - I(x)

again holds. The narrow transition region (II) first develops over the timescale T = 0(1), this
development being governed by (4.19).

Secondly, there is a timescale close to the extinction time. We write

* = t* + En-2, X = X, + En-2-

on this timescale regions (I) and (II) have merged into one, and at leading order we have,
since v= E- 2

au, a( aUo)

a( ) -/(n-1) (4.20)

at t- u - q(Ii + - 4K2

(n - 1)2MI(xco)

where q(t) satisfies
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4K2 dq
4K 2 (q - --~ dq (4.21)(n -1) 2MI(xc) ( q - I(xc°)) = q - do(4.21)(n - 1)2M,(X)do '

We note that u0 is symmetric about x = 0. To completely specify the problem, the constant of
integration which arises on integrating (4.20) must be specified; this corresponds to
specifying the origin of by some choice of the O(E" -2 ) term in t*(e). The behaviour as
t-- -o follows from matching, using

s* (t* x + (t* - t*)g(t*o) as t*-- t* +

with

~s(t*o) = -4K 2 /(n - 1) 2MI(xo) .

We have in particular that

4K
2

(-t)u - I(xco) for - 2( - I > 1.(n - 1) MI(xco)

We note the result

d (n 4K2 1) /(n-1) 
4 K2

dt- o (U (n )M x) (n - )2 M 

which follows from (4.20) because the condition as x--- + is equivalent to the flux condition

1-n au0 4K
2

as x---> + u0 ax (n -- 1)2M

The behaviour of (4.20) as [--> +oo takes the form

uO t--l/(n-2)b(.Xltan-)(n2)) (4.22)

where b(A) satisfies

1 ~b - PA db d db)
n-2 (b+ (n1)A dA= dA (b- dA

db
atA=0 - =0,

dA

as A--> +oo b - (4K2Al(n - 1)M)- I/ ( - )

This solution is equivalent to (3.16). It follows that for t* = t* + 0(1) we have u = O(E), and
the high concentration region has disappeared.

4.3.2. n = 2
It is more revealing to consider this case using asymptotic methods rather than by
immediately exploiting the exact linearisability of the equation. The structure is, for the most
part, similar to that for n > 2. The asymptotic results can, however, be motivated by, and
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checked against, exact solutions for special initial conditions. If, for example, we consider
the case

Ixl<1I(x){2
=0 I1>1

then writing

v = f u(x', t) dx'

leads to the exact solution

e(M + 2E)x = 2ev + M((M + 2v + 2e) erfc((M + 2v + 2e) 14t 2)

- (M - 2v + 2s) erfc((M - 2v + 2E) /4t 1 2 )

+ 4 t (exp(-(M - 2v + 2) 2/16t)-exp(-(M + 2v + 2)2/16t)),

u = 2e(M + 2,)/(4e + M(erfc((M + 2v + 2)4t 1 2 ) + erfc((M - 2v + 2e)/4t /2)));

in particular

u(O, t) = e(M + 2e) /(2e + M erfc((M + 2e)/4t /2)). (4.23)

For n = 2, (4.3) again has no solution so that a different balance must be found on a
shorter timescale, and we write t* = v-'t where v 1 is again to be determined.

In this case five regions are required to describe the full asymptotic structure; the first four
parallel those of Section 4.3.1.

(I) For x < s(t*) we have

u - I(x) .

(II) For x = s*(t*; v) + vz* we obtain (4.12) with n = 2, so that

1 1
-9Z* = I(s;)u + 12(st) ln((l(s) - Uo)/Uo) .

It follows that

u 0-- ls*oI(so)z* as z*-* + , (4.24)

which corresponds to (4.13).

(III) For x = s + 0(1) we write u = v to give
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at* ax -2 ax

and matching with (4.24) implies that

%0 = -1/sI(s*)(x - s) . (4.25)

In this case an intermediate region (region (V)) is required between regions (III) and (IV),
but in order to motivate this we first discuss region (IV).

(IV) Writing

U = EW , X = v1/2 -ly
*

yields at leading order (4.15) with n = 2, so that w is given parametrically by (see (3.9))

1 _2/4 = e 2/4 erfc(6/2) ,
(4.26)wO = 2/erfc(e/2), (4.26)

where

= y*/t*1/2

From (4.26) it follows that

w° ln1/ 1+ Inln(1/I) ln(2/-) as )-2 0 (4.27)

30; In' /'(1IC) 2 1 n(1/I) 21n(1/) as (4.27)

and the presence of the ln(1/) terms makes the matching rather more delicate than for
n >2, and prevents direct matching of (4.27) with (4.25). In the intermediate region we
write

(V) w = v"/2 p/y*, x* = v Iln(l/y*)

to give

ap -2 ap a ( -2 ap
at* ax ax* ax* 

Matching with (4.27) requires that

p _(t*x*)
1 2 asx*-0 +, (4.28)

and, since

ap -2 apO
at* +Po ax* 
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this implies that

Po = (t* /x*)1/
2

(4.29)

Because we have

1/2 -1 -x/vp =xp, x =v e e

it follows that (4.29) may be written as

p0 = t* 112/(l ln(v/2/E) - v lnx)'/2

and matching with (4.25) requires that

v ln(vl'2/e) = 0(1).

We may then take

v = 1 /Iln(i/e),

which gives

x* = 1 - v ln(1/v)- v Inx .

Expression (4.25) then also requires that

-s*i(s*) = t*-1/2

so that

I l(x) dx = 2t*

this may be compared to (4.16). Extinction occurs at t* = tc*(), x = x,(e) where

t* t**o=-M2/16, XC - xco,

with xco given by (4.18).
There is again a shorter timescale described by (4.19) which we do not discuss further.

Close to the extinction time we introduce the rescalings

t* = t* + V-, x = x c + £

to give (4.20) and (4.21) with n = 2, K = 1. In this case

s*(tco) = -4MI(xco)

holds.



Singular nonlinear diffusion equation 59

When n = 2 we may solve (4.20) exactly by means of the non-local transformation, and
this case illustrates the general case. We write

V = f uo(x', ) dx'

to give, for ix 0,

avo = ( aO, -2 U

at \ ax 2a

at x = 0 v = 0 ,

(4.30)

asx--> + vo Inx,

as --o- I(xo) + e x p + M) --.

To deduce this behaviour as t- -oo we note that it follows from (4.20)-(4.21) with n = 2,
K = 1 that

v - - + r + ti as ---> ,
M t Ml(x'O) /

where

dr
q(co) = d (o),dco

with

2

Ml(x) - I(Xo) r dr 2'

Hence, because vo = 0 at i = 0, we obtain

co= r + Ce(4/M)r

for some constant C, and we may set C = 1 by choice of the origin of tto give the condition
appearing in (4.30).

The solution to (4.30) may readily be obtained in the form

- = V0 16r/M
2

x o + 2 e sinh(4vo/M),

so that

u = M(xco) I( M + 8I(xco) el6iIM
2 cosh(4vo/M)). (4.31)

It follows that
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M
U0 4( 2 + 4 e32tM2 1/ 2 as t-- +oo, (4.32)

which may be written in the self-similar form

o - e- 16t/M 2 h(x/e 16t/M 2) (4.33)

with

h(A) = M14(A2 + 4)1/2

This is an exact solution to (1.1) with m = -2, and is the solution which corresponds to
(1.5)-(1.7) with m > -2; see King [14]. We also note the result

uO(O, t = MI(xco)/(M + 8I(xco) el67/M2), (4.34)

which follows from (4.31).
Because, in contrast to (4.22), the decay of (4.33) is exponential rather than algebraic in t-,

we are unable to match (4.32) directly into the late-stage development which occurs when
u = O(E) everywhere. The situation can be clarified by examining the special case (4.23) in
which

u(O, t) - M/(2 + M erfc(M/4t'/ 2)/E)

holds as -- 0, so that for t 1

u(O, t) - Ml(2 + 4t' 2 exp(-M 2/16t)I/VrE) . (4.35)

Hence, writing v = 1/ln(1/e) as before, for

t*= t* + vt,

with

tC*= 1( + ln(1/v)-vln(M/8/Ir)),

we obtain

u(O, t) - MI(2 + 4 e161/M2)

(the O(v) term in t* is chosen for consistency with (4.34)). It is evident from (4.35) that the
late-stage behaviour in which u(O, t) = O(e) occurs for t = 0(1), and not for t* = t* + 0(1),
which is the case for n > 2.

If we consider the timescale t = 0(1) with

-1
u=ew, X=E y,
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then we have

aw / -2 
at -~~=-~~~~~~ d W~ t 8 J. ~~~(4.36)Oat ay( way

and the leading order initial condition on (4.36) (which comes from matching back into the
shorter time behaviour) may be written

att=0 w=M5(y)+l.

We may therefore use the solution of Section 4.3.2. This implies that for t < 1, y = O(tl1 2 ),
we have

w wo(y/t /2) ,

where w0( ) is again given by (4.26). The solution in the high concentration regime follows
from (3.10), so that for t 1, y = O(t312 exp(-M 2 /16t)), we have

w - 4t/(M2y 2 + 256t3 e- M2/St/rM2)1 /2 (4.37)

Since t = vt* + v2t we have for = 0(1)

1 1 t
t vt* t* 2

and because t* - M2/16 we recover from (4.37) the exp(32t/M2 ) dependence occurring in
(4.32), with which it is possible to match (4.37).

5. Discussion

As already noted, when m - -2 the equation (1.1) has no finite mass solutions valid on an
infinite domain. One aim of this paper was to gain understanding of the limiting processes in
which the width of the domain tends to infinity or in which the background concentration
tends to zero. Such limits are of relevance to, in particular, semiconductor applications, as is
the surface source problem (discussed in Appendix 2) which has a number of similar
features.

This paper was also intended to extend the results of [12], [13] and [11] for diffusivities of
the representative form

D(c) = (c + E)m

(with E 1 and with c---> 0 as xl ) by considering the full range of values of m. The
following particular features of such problems may be highlighted.

(a) For m > 0 the solution for = 0 has compact support if the initial data does; for > 0 it
does not.

(b) For m < -2 there is no solution when = 0.
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There are a number of ways in which the analysis of this paper could be extended. If, for
example, we consider general diffusivities D(u), so that

au = (D(u) )
at ax ax)

and impose conditions (1.9) with E = 1, then under the transformation (3.6) we obtain

au = a (D*(U) ) (5.1)
aT ax (D(U) O~ (5.1)

with D*(U) = D(1/U)/U2 , subject to the same boundary and initial conditions as in (3.5).
If, for sufficiently small U, we have

fI (D*(U')/U') dU' < (5.2)

(this is the criterion for the finite speed of propagation of the interface between regions in
which U > 0 and in which U -0) then the solution to (5.1) may be written exactly for finite
time in the form (3.11), where P(5) satisfies the free boundary problem

dP d ((p) dP)
-½d� f ( d (

as 5 - P 1,

at = 0 P=O, lim D*(P ) d )= 0,P, _ d : - ½0

where G0 must be determined as part of the solution. The form (3.11) is again valid for
T< Tc where T is given by (3.13).

The condition (5.2) is equivalent to

I u'D(u') du' < (5.3)

for sufficiently large u, and this is therefore the condition for the persistence of the delta
function for finite time. The behaviour at x = 0 is again given by (3.15). The condition (5.3)
can obviously be satisfied by diffusivities, such as D(u)= e- u, which are not singular as
u- 0.

If initial conditions (incorporating a delta function) are chosen such that the corresponding
solution to (5.1) is a "waiting-time" solution (see Lacey et al. [15]) in which the support of U
does not change until T = Tw say, with T w > 0, then the amplitude of the delta function will
be undiminished for t Tw after which it will decrease.

It can also be instructive to consider more general forms of initial-boundary value
problems for (1.1). One such generalisation would be to impose initial conditions with

as x--> - u--> El, as x-- + u--> E2

for different constant background concentrations E, and e2. A particular consequence of this
change would be that, in the problem corresponding to (4.20), u0 would not be symmetric.
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The values of the background concentrations play a decisive role in determining the rate of
loss of mass from the high concentration region.

Another generalisation, which combines some of the features discussed in Sections 2 and
3, is the following:

Ou
at x0 = 0,

ax

asx-+oo u-->1,

at t = 0 u = M8(x)+ M 2 (x - xo) + H(x - x) ,

where x > 0; we take

1J 8(x) dx = 2

Transformed conditions are then

at X = aU

as X-+o U---> 1,

atT=O U=x,8(X- -- ) + H(X-2 (Ml + M2)).

For n > 2 the solution for U is thus given exactly for some finite time T < Tc, say, by an
instantaneous source solution centered at X= M,/2 together with a solution of the form

U = P((M, + M2 - 2X)/2T ' 2 )

which will hold for sufficiently large X; P(C) again satisfies (3.12). It may then be shown
that, for t < Tc, u takes the form

u = tl'ng(x) for0<x<x ,

with g---> +oo as x- 0+ and as x- x, and

u =p((x-x0 O)Itl /2 ) forx>x0 ,

with p( )-> +oo as -0 +, with delta functions persisting at x = 0 and at x = x0 . Since U = 0
for 0 X < 'M 1 - aTln and for 1M + aT T"< X (M1 + M 2)- o T 1 /2 , for some con-
stants a and :0, it in fact follows that

at x = O u = (M - 2at l' n)6(x)

and

at x = xo u= (M 2 - 2at'n - 2 0otl'2 )8(x - ) ,

as long as the coefficients of both delta functions are positive.
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This last example illustrates some of the types of similarity solution which play a role in
these problems, which include the instantaneous source solution (1.5), the separable solution
u = tng(x) and the Boltzmann solution u = p(xltl'2 ). We may summarise the occurrence of
such solutions in Sections 2 and 3 as follows.

(1) m >0 Instantaneous source solution.
(2) -2< m <0. Instantaneous source solution at high concentrations; either separable

solution (Section 2) or Boltzmann solution (Section 3) at lower concen-
trations.

(3) m < -2 Separable solution (Section 2) or Boltzmann solution (Section 3).

We emphasise that in cases (2) and (3) the low concentration behaviour depends strongly on
the form of the boundary conditions. The leading order high concentration behaviour in
cases (1) and (2) is, for sufficiently small times, independent of which boundary conditions
hold, whereas for case (3) it is not, the rate of depletion of the delta function (or, as in
Section 4, the high concentration region) being determined by the low concentration
behaviour. Roughly speaking, the behaviour is dictated by the high concentration region in
case (1) and by the low concentration regions in case (3), while in case (2) the details of the
high and low concentration regions have little influence on one another.

There is a further similarity solution which plays an important role for m < -2, namely the
solution (4.22). The instantaneous source solution for m > -2 is often thought of as the
solution which describes the behaviour once the details of the initial conditions have been
forgotten. The solution (4.22) plays a similar role here in the case m < -2. As may be seen
by comparison of Sections 3 and 4, once (4.22) comes to describe the behaviour the solution
for delta function initial conditions approximates that for much more general initial data; the
same holds true regarding a generalisation of the problem discussed in Section 2 whereby the
mass is initially concentrated in a region of thickness much less than L + L2. One respect in
which the solution (4.22) differs from the instantaneous source solution is that it describes
the behaviour fairly close to the particular time t* = t*, whereas the latter gives the
behaviour of (4.3) as t--o . Nevertheless, the solution (4.22) is that which, for m < -2,
plays the role closest to that of an instantaneous source solution in describing the behaviour
at high concentrations.

We note that in the borderline case m = -2 the relevant solution (either (2.13) or (3.10))
has a rather unusual time dependence which depends (slightly) on which boundary condi-
tions hold; these expressions take the self-similar forms

u t /2 eM 2/16f(lt1/2 e-M2 /16t )

and

u t-1/2 eM
2

16tf(Xlt 3 12
e

-
M

2
/16t)

respectively. For m > -2 the solution is of the same form in each case (see (2.18) and
(3.16)).

As already indicated, for all values of m the solution for delta function initial conditions is
approached (on appropriate timescales) by the solutions for much more general initial data.
This provides justification for considering problems with delta function initial conditions.
The appropriate timescales in Section 4 are those for which e < Umax a< 1. When u has
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become of O(e) everywhere the instantaneous source solution for m > -2 and the solution
(4.22) for m < -2 no longer describe the behaviour. These solutions therefore provide a
description of the intermediate asymptotics of the problem in the sense discussed by
Barenblatt [16].

We have limited this paper to discussing one-dimensional problems. Additional effects can
arise in higher dimensions and such matters will be addressed elsewhere.

Appendix 1. Asymptotic analysis of (3.1) with m > 0

In this appendix we briefly discuss the behaviour of (3.1) for 0< E< 1, m >0. The case
m = 1 has been discussed in King and Please [12] and King [13]; this turns out to be a
borderline case, and here we shall discuss the cases m < 1 and m > 1.

The asymptotic structure for (3.1) consists of two outer regions x < s and x > s, where
s(t; ) is to be determined, separated by a narrow transition region in which x = s + O(em).

(1) Transition region

Introducing inner variables

x = s(t; ) + Z, U = EW

we have

m w ds w a ( dw)
at dt az 8z w z

Writing s = s(t) + o(1), w = w,(z, t) + o(1) as E-0 we obtain (writing So- ds,

-S(Wo- 1)= Wo Z ' (A1.1)

where we have imposed w- 1 as z -- + oo because u - E is exponentially small in the second
outer region x > s. The arbitrary function of t which arises on integrating (A1.1) corresponds
to a translation in the origin of z and may without loss of generality be absorbed into the
O(e m ) term of s(t; E). Hence we may write

(a) m integer

m k

-- 0Z = w0 +In(w - 1) (A1.2)
k= k

(b) m non-integer

-5 z = ~ m-k for w > 1 (A1.3)
k=O Mk

with
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1 m-Soz = In(w- -1)-+ k) + o(l) as w0--->l+; (A1.4)

we note that

E m = 4(1 - m) + ,k1, k(m - k)

where

+(z) = d (In F(z))

is the digamma function and y is Euler's constant.
From (A1.2) and (A1.3) it follows that if m $ 1 then

Wo - (- r~z)" - 1 as z- -oo. (A1.5)

(2) First outer region (x < s)

In x < s we write

u - uo(x, t) + EUI(X, t)

and it follows from (3.1) that u is given by (1.5) and (1.6), and matching with (A1.5) then
requires that

so = atl/(m+2 ) . (A1.6)

The correction term u satisfies

du, 2

at Ox2 ( u u l )

so that

au au m 2 )U
(m + 2)t - - ((1 - 2 )U (A1.7)

where

= x/atl(m+2)

The behaviour now depends on whether m - 1 is positive or negative. If m < 1 we can match
directly into (A1.5) by writing u, - ul(i) so that u, satisfies

m(l 2) - 2(2m - 1 du - 2mu = , (A1.8)
d*-22--)
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du1at,/ = 0,
(A1.9)

at 77 = 1 u 1 --

The solution may be written

l = E bkn k(Al.10)
k=O

where

2mk 2 + (3m - 2)k + mb (A.11)
m(k + 1)(2k + 1) k'

and b is chosen so that

1
bk = -- (Al.12)

k-1b m-1

We note that bk = O(k - /m) as k so that the sum in (A1.12) is only convergent for
m < 1. Equivalently, it may be shown that the solution (A1.10) and (A1.11) behaves as
follows:

ifm<1 u1 = 0( 1 ) as--> 1-;

if m > 1 u = 0((1 -7) ( 1 -m ) m ) as ,-- 1- .

For m < 1, matching with (A1.5) requires that

s = so(t) + o(Em ) . (A1.13)

For m > 1, (A1.8) subject to (A1.9) has no solution, and in place of (A1.13) we have

s sO(t) + Es(t)

so that (A1.5) provides the matching condition

) 1/ r - _ --
u (m(s - x)) (1S) s0 S - as x- s

We must therefore solve (A1.8) subject to

dutatrl=O =0,

as -71 - u = a(l - 7)(1-m)m_ + o(l),1

where the constant a is determined as part of solution. The solution again takes the form
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given by (A1.10) and (Al.11), and s(t) is given by

1 - a(mso)(m-1)/m-1 / m

so that

(m-2)mm m+2m I/mS = a ) m ) t

However, to obtain s correctly to O(em) further correction terms may be needed, depending

on the value of m. For 1 < m < 2 the preceding analysis is sufficient, and

s = So(t) + esl(t) + O(Em ) ;

for m = 2 terms in s of O(82 ln(1/e)) and O(e2) are needed, and the term in u of 0(82) must
be calculated. In general increasing m by one increases the number of terms needed.

The significance of these correction terms lies in the fact that a leading order expression

for u- E in the second outer region cannot be determined unless s is determined up to

O(Em). This follows from (A1.2) and (A1.4) which imply that

wo 1 + Ae-O' as z-- +o,

where the constant A can be determined from (A1.2) or (A1.4). Written in terms of the

outer variables this reads

u - e- Ae s0(X-s)/e'm (Al.14)

so that terms in s up to O(em ) must be. known for the leading order term in u - e in x > s to
be calculated.

(3) Second outer region (x > s)

Since u - e is exponentially small in x > s, we can write

au m a2 u

at aX2

and writing

ln(u - ) - -Fo (x, t) /em

(we shall only consider the leading order term in ln(u - E)) we have

aFo _(aF0 2

at ax ' F (Al.15)
atx=s o Fo = O, ax = ° '

ax O

where we have matched with (A1.14). Because so is given by (A1.6), F0 takes the self-similar
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form

Fo = a2t-m/(m+2)Go(r)

where = x/atl/(m+2 ) and

__(__ + dGo0 _ (dGo0 2
-2 mG + r drq /=\ d / '

~~dG~~~~ _ 1 ~(Al.16)
at 7= 1 Go=O, d m+2

By writing G0(77)= r1
2H( 7 ) we may transform (A1.16) into a separable equation and we

may write its solution in the form

( + + 4m(m + 2) G)((m + /1), - / 2 + 4m(m + 2)Go)m+l = 2mm +l

We note that for any m

Fo x2/4t asx-- +,

corresponding to the far-field behaviour for linear diffusion.

Appendix 2. The surface source problem

In this appendix we consider another initial-boundary value problem which is of practical
relevance, namely

au a -( au)
at ax ax '

atx =O u = 1 ,

as x- + U-E,

att=O u= e .

(A2.1)

The solution to (A2.1) takes the self-similar form u = u(xlt/ 2 ). For n <2 the problem
(A2.1) has a solution when = 0; for n > 2 it does not, and here we briefly discuss this case
in the limit ->0+ . Seeger [17] has given the exact solution for n =2, but an asymptotic
approach is nevertheless of value even then because e < 1 is a physically important case and
the exact solution is fairly complicated.

The asymptotic behaviour for e 1 and n 2 is as follows.

(a) n > 2

The asymptotic solution has two regions, namely x = O(E- n/ 2 ) and x = 0(E (n-2
2
). Writing

U = W X = -n2yu=ew, xre y,
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we have outer solution

W _p(ytl 1 2 ),

where p(5) satisfies (3.14), giving

p(g ) - (K;) () as -- 0 + ,

where the constant K is determined as part of the solution to (3.14).
In the inner (surface) region where u = 0(1) we write

X = E(n-2)/2.

and the leading order inner solution is quasi-steady:

U (1 + KX/tl 2)-I/(n) . (A2.2)

(b) n=2

Writing

U = EW, X= E y,

the leading order outer solution is given by (4.26) with ; = ylt1 12 . In terms of these variables
(5.1) reads

_ dw_ d -2 dw

at= 0 w = 1/e, (A2.3)

as -- +oc w--> 1.

The surface region in which u = 0(1) is given by

= V 1/2E4

where v = 1/ln(1/E) so that

d / du\ 1 du
, u 4 . (A2.4)d ( d;) - d; (A2.4)

In order to match the solutions for = 0(1) and 0 = 0(1) we require a transition region in
which we write

w=vl/2p*/, 2*=vln(1/'),

giving
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p-2 dp* +d (* -2 d dp*

and matching with (4.26) using (4.27) we may obtain

P *1/2 (1+ vln(1/) 2 + v 2 (In(2v-*)2) (A2.5)

From (5.4) we may then derive for = 0(1)

u-1 (1 + ±vlnq/\ + (In(l )\ (ln(2Vr) - 2) ln(1 +
(1 + ) 4(1 + ) 2 (1+ ) (1+

where we have matched with (A2.5), using

u=p*1, *=l+ 2lV In(1/v) - v In .

In terms of the original variables the leading order solution in the surface region thus reads

u - 1/(1 + ln 1/2(1/e)x/lt 2 )

and this is of the form noted by Gosele et al. [5] (their equation (9)) as providing a good fit
to an experimental profile. More generally we may note that the solution (A2.2) describing
the important high concentration region is particularly simple and is well-suited to fitting to
experimental data.

We note that the exact solution for n = 2 may be written in the form

= Eye( y 2 - 2 )
4 - (1- (1- e) erfc(-/2)

erfc(- ,/ 2)

W=1/(1 (1E- ) erfc(- /2) '
erfc(- y/2))

where the constant y is determined from

2Y ey 2/4 erfc(- y/2) = (- -1)

The solution is thus expressed in terms of a parameter 6, with

= f (w(6') -1) d' -;

we have

Lo (W() )d =

and
2

V
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